Restricting Hecke–Siegel operators to Jacobi modular forms
نویسندگان
چکیده
منابع مشابه
Vertex Operators and Modular Forms
2 Vertex Operator Algebras 6 2.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . 6 2.2 Local Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Axioms for a Vertex Algebra . . . . . . . . . . . . . . . . . . . 9 2.4 Heisenberg Algebra . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Virasoro Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 13 2....
متن کاملModular forms and differential operators
A~tract, In 1956, Rankin described which polynomials in the derivatives of modular forms are again modular forms, and in 1977, H Cohen defined for each n i> 0 a bilinear operation which assigns to two modular forms f and g of weight k and l a modular form If, g], of weight k + l + 2n. In the present paper we study these "Rankin-Cohen brackets" from t w o points of view. On the one hand we give ...
متن کاملConstruction of Vector Valued Modular Forms from Jacobi Forms
We give a geometrical construction of the canonical automorphic factor for the Jacobi group and construct new vector valued modular forms from Jacobi forms by differentiating them with respect to toroidal variables and then evaluating at zero.
متن کاملThe Mordell Integral, Quantum Modular Forms, and Mock Jacobi Forms
It is explained how the Mordell integral ∫ R e −2πzx cosh(πx) dx unifies the mock theta functions, partial (or false) theta functions, and some of Zagier’s quantum modular forms. As an application, we exploit the connections between q-hypergeometric series and mock and partial theta functions to obtain finite evaluations of the Mordell integral for rational choices of τ and z. 1. The Mordell In...
متن کاملEstimating Siegel Modular Forms of Genus 2 Using Jacobi Forms
We give a new elementary proof of Igusa's theorem on the structure of Siegel modular forms of genus 2. The key point of the proof is the estimation of the dimension of Jacobi forms appearing in the FourierJacobi development of Siegel modular forms. This proves not only Igusa's theorem, but also gives the canonical lifting from Jacobi forms to Siegel modular forms of genus 2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2009
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2009.01.027